

● Step 1 - Setting Up the Scene

● Step 2 - Adding Action to the Ball

● Step 3 - Set up the Pool Table Walls

● Step 4 - Making all the NumBalls

● Step 5 - Create Cue Ball

Step 1 - Setting Up the Scene

1. Create a scene:

○ In the gallery, click on Scenes tab.

○ Press Add Scene button.

○ Enter a name for the scene, such as “Main”.

○ Press Create button.

○ Click on the Main scene in the gallery to open it.

○ Optional: On the top right part of the scene, adjust the Viewport to a

device that you prefer. It’s useful to make it as large as possible

where you can still see the whole scene, without getting scrollbars.

2. Add background image:

○ In the gallery, click on Assets tab. Choose Images.

○ Drag the background image onto the scene.

https://www.actimator.com/course/pool-1/book/setup/step1.html
https://www.actimator.com/course/pool-1/book/setup/step2.html
https://www.actimator.com/course/pool-1/book/setup/step3.html
https://www.actimator.com/course/pool-1/book/setup/step4.html
https://www.actimator.com/course/pool-1/book/setup/step5.html
https://www.actimator.com/course/pool-1/book/index.html
https://www.actimator.com/course/pool-1/book/index.html

3. Move the background image to cover the whole scene. Select and drag the

background image, or use the Property Editor to set the image’s Left and Top

properties to “0”.

4. Create the NumBall actor

○ From the gallery, choose Actors tab.

○ Click on Add Actor button. It opens a window to add an actor.

○ Set Actor Name to “NumBall”.

○ Under images, choose “Ball number 1”.

○ Press Create Actor button.

5. Drag the NumBall actor to the scene. Run the scene. As you see, nothing happens.

In the next video we will learn how to add action to our actor.

Step 2 - Adding Action to the Ball

1. Make the Ball move.

○ Select the NumBall from the Scene

○ The Property Editor will open on the right; that will give you access to

change the properties of this entity.

○ Scroll down in the list under the physics category, and set the linear

velocity to “10”, and run the scene. The ball will start moving toward

the top of the scene.

2. Change the moving direction: Go back to Property Editor and change the Velocity

Direction to “45” and run the scene. Do the same thing for “90”, “180” and “270”. This

gives you a sense of how to set the moving direction of the ball.

3. Adjust the ball’s shape: Drag and drop another NumBall to the scene, where the first

ball will have a slight collision with it. Set the first NumBall ‘s Linear Velocity to “1” and

the Velocity Direction to “90” and run the scene. As you can see, even though the

Balls are circular, they will have collision on corners too. To fix this, in the first

NumBall properties, change its shape to “circle”. Run the scene; we still have a

problem with the second NumBall. Fix the shape for the other NumBall as well.

4. Adjust the shape for all balls: To fix the shape for any NumBall entity that will be

created from now on, we need to adjust the shape property of NumBall actor:

○ Go to NumBall actor.

○ Click on Image and/or Property Editor.

○ Change the shape to “circle”.

Step 3 - Set up the Pool Table Walls

To keep the ball on the table we need to put some walls around the table.

1. Create vertical walls: Go to Actors and create a new actor; name it “VWall” and use

the “vertical wall” image for it. Drag and drop the wall on the scene and move it to the

right position.

2. Make the wall motionless: For one of the balls, set the Linear Velocity to “20” and

Velocity direction to “90”. Run the scene. As you see, the wall will move when it is hit

by the ball. To keep the wall from moving, we have to make the wall motionless. To

do so:

○ Go to Property Editor under the Physics category and set the Typeto

“Static”. Run the scene again. This time, the wall does not move when

it is hit by the ball.

○ To make all the vertical walls motionless, go to the VWall Image and/or

Property Editor, set the Type to “Static”. Drag and drop the second

VWall to the scene.

3. Create horizontal walls: Create another actor and name it “HWall”. Use the horizontal

wall image for it and set its Type to “Static”. Drop the HWall on the scene and put it in

the right position.

4. Rotate walls: As you can see, some of the walls’ lighting are not toward the table. We

can fix this by rotating those walls. To do so, choose each wall entity, in Property

Editor; under the Image set Image Rotation to “180” degrees.

Step 4 - Making all the NumBalls

In this step we will make all the numbered balls and will put them on the scene.

1. Set the speed to zero, to make sure all of the balls behave the same and none of

them are going to have preset speed. Select each ball, and in its Property Editor make

sure the Linear Velocity and Velocity Direction is zero.

2. Put all the NumBalls on the scene: Start lining up the balls on the scene. Drag and

drop more NumBall to the scene. You can make a copy of the balls that are already

on the scene by pressing the CTRL key and then dragging the balls.

3. Change the balls’ image: Select each ball; in Property Editor under the

Propertiescategory, change the Image for each of them from 1 to 15. These images

have been preloaded under the Assets for you.

4. Lay the balls: Start putting the balls on the scene where they are supposed to be.

Use their Left and Top properties to adjust their position.

Step 5 - Create Cue Ball

1. Create the CueBall actor: Because the CueBall has different behavior from other

balls, we need to create a separate actor for it.

○ Go to Actors.

○ Click on Add Actor.

○ Set the Name to “CueBall”.

○ Choose the Shape to “Circle”.

2. Put the CueBall on the scene.

○ Drag and drop CueBall on the scene.

○ Move it to the correct its position. Use Top and Left values as

reference.

3. Adjust the moving direction of CueBall : As you see, the arrow on the ball is upward,

which shows the direction that the ball will be moving towards. To make the CueBall

move towards other balls, we need to rotate it. To do so, go to Property Editor, and

under the Image set the Rotation to “90” degrees.

4. Hit the CueBall : Run the scene. As you see, nothing happens. Set the Linear Velocity

to “50” and Velocity Direction to “90”. Run the scene again. As you see, CueBall

moves and hits the NumBalls .

Step 6 - Adjust Bounce

In the past step, the NumBalls’ reaction to the hit does not look natural. In this step, we do some

adjustments to make the NumBalls’ movement natural. This is mostly because the real pool

balls are more bouncy. Therefore, we need a way to make Numballs more bouncy. In Actimator,

this is very easy to achieve using the Bouncinessproperty of entities.

1. Set the bounciness manually: Select a NumBall entity and in Property Editor, under

Physics, change Bounciness to “0.8”. Do the same thing for a few balls and run the

scene. It looks like it fixed the problem.

2. Set the bounciness programmatically: We can go on with what we were doing in the

previous step and change the bounciness of all the Numballs . But it’s

time-consuming. To save some time, we can program the NumBalls to set their

bounciness to “0.8” as soon as the game starts.

○ Go to Actors.

○ In front of NumBall click on </>(Program Actors Behavior).

○ Go to Events tab, drag and drop Entity Create into the Programming Area.

○ Go to the Commands tab, and find the Set command under the

Assignment/Variable.

○ Drag and drop it inside the ON_CREATEevent in the Programming Area.

○ Find This Entity command under the Actor\Entity.

○ Drag it into the first parameter of the Set command that you have

already put in Programming Area.

○ Set the value for This Entitycommand to “Restitution”(Bounciness).

○ Set the value for the Set command to “0.8”.

The ON_CREATE event is triggered whenever an entity of that actor is created. For the existing

entities on the scene, as soon as the game starts, which is when you press the play button, the

ON_CREATE event is triggered for all those entities. This means that when the game starts, the

bounciness of all NumBall entities will be set to “0.8”.

Run the scene. All the NumBalls bounce more naturally now. Do not forget to fix the CueBall

bounciness: Click on the CueBall entity on the scene under the Property Editor; change its

Bounciness to “0.8”.

Step 7 - Stopping

Run the scene again. As you see, once the balls are hit, they do not come to a stop. In the real

world, the balls lose speed gradually due to the friction and finally, they stop. In this step we will

find out how to make the balls stop. There is no way in Actimator to define the friction between

the balls and the table. The friction is only applied when two entities hit each other, which is

either when two balls hit each other or a ball hits the wall. Therefore, we need to simulate the

friction by gradually reducing the speed of the balls.

1. Program the NumBall decrease of speed:

○ Go to Actors.

○ Go to NumBall programs.

○ Go to Events tab, and drag Tickevent to Programming Area. This event will

occur 20 times per second. Therefore, it is a suitable event to program

the gradual decrease of speed.

○ We need to check the NumBall speed each time and if it’s not zero

yet, we need to decrease it a small amount. To check the speed, we

will drag the IF from the Control Flow Toolbarinside the Tick event.

○ Go to Commands tab, and find Relational command under the Logic

category. Drag and drop it inside the IF command’s

Conditionparameter.

○ Find This Entity under Actor/Entity, and drop it as a first parameter of

Relational.

○ Set Relational operator to “>=”.

○ Set the second parameter of Relational to “0.03”.

○ Find Increase command under the Assignment/Variable category, and

drop it into the IF body.

○ Change Increase command to “Decrease”.

○ Drag a This Entity command into the first parameter of

Decreasecommand.

○ Set This Entity parameter to “speed”.

○ Set decreasing amount to “0.03”.

2. Stop NumBalls from rotation: Run the scene; as you can see, the balls will stop

moving but they will still rotate due to their angular velocity . We need to set their

angular speed to zero.

○ Drop under IF under the Tickevent.

○ Set Relational as This Entity“speed” < “0.03”

○ Find Set command under Assignment/Variable, and drop it under the

IF body.

○ Drag a This Entity command into the first parameter of

Setcommand.

○ Set the parameter of This Entityto “Angular Speed”.

○ Leave the value to “0”.

○ Run the scene and check that all the NumBalls come to a complete

stop now.

3. Repeat all the above steps for “CueBall”.

Run the scene and make sure it’s working as expected.

Program the Cue

Step 8 - Program Cue Ball Turning & Shooting

The CueBall will just shoot once at the beginning of the game because of its preset speed. But

we want to be able to rotate it with right and left arrow keys, and shoot it whenever we click on

the CueBall.

1. Program the CueBall to turn right, when the player presses the right arrow key. To do

so, we have to check constantly for whether the right key has been pressed or not,

and if so, we rotate the ball in a clockwise direction.

○ Go to CueBall’s program.

○ Go to Events, and find Draw (Before Render) under Graphicsevents. This

event will happen 60 times per second, right before refreshing the

game screen at every frame. Drop it in the Programming Area.

○ Drop an IF command from the Control Flow toolbar.

○ Find the Key command under the Logic category and drop it inside the

IF command’s Conditionparameter.

○ Set Key value to “Right Arrow” by pressing the right arrow key.

○ Find Increase command under the Assignment/Variable category. Drop it

inside the IF body.

○ Find This Entity command under Actor/Entity category and put it inside

the first parameter of Increase.

○ Set This Entity parameter to “Rotation”.

○ Set Increase amount to “2”. Increasing the rotation degree causes the

entity to rotate clockwise.

2. Program the CueBall to turn left, , when the player presses the left arrow key. To do

so, we have to check constantly for whether the left key has been pressed or not,

and if so, we rotate the ball in a counterclockwise direction.

○ Put another IF under the Draw (Before Render) event.

○ Drop the Key“Left Arrow” command inside the Condition parameter of

IF.

○ Use Increase & This Entitycommands and make this command: Decrease

This Entity “Rotation” by “2”. Decreasing the rotation degree causes

the entity to rotate counterclockwise.

3. Program shooting the CueBall . To do so, whenever the player clicks or taps the

CueBall , we give it speed towards its current direction.

○ Find the Mouse Down event under the Entity Mouse/Touch events. Drop it

inside the Programming Area. This event will be triggered when you click

or tap on this entity.

○ Drop a Speed command inside the event.

○ Set the Speed parameter to “50”.

○ Now we have to set the direction of the CueBall by setting the

Angleparameter of the Speed command. We need the CueBall to move

towards its current direction shown by the arrow on the CueBall . As

the CueBall moves during the game, it rotates and the arrow’s

direction rotates with it too. Because in the first place, we set the

arrow direction to have the same value as the CueBall’s Rotation

parameter, we can use the Rotation parameter to get the CueBall’s

current direction. To do so, drop This Entity to the Angleparameter of

Speed command. Set This Entity parameter to “Rotation”.

Run the scene and make sure it’s working as expected.

Step 9 - Cue Ball Rotation Touch Controls

We want our game to be playable on smartphones and tablets too. Using the keyboard during

the game is not comfortable on those devices. In this step we are going to add arrow buttons to

control the rotation of CueBall .

1. Create the arrow button actors:

○ Go to Actors tab.

○ Click On Add Actor button.

○ Set the Actor Name to “Right”.

○ Choose the “Right” for the Image.

○ Set the Has Physics to “False”. This causes the Right button to not

collide with any other entity so we can place them anywhere we want

on the scene.

○ Press Create Actor button.

○ Repeat these steps to make the “Left” actor .

○ Drop and position and entity of each of the Right and Left actors on

the scene.

2. Program the Right actor to turn the CueBall clockwise when the player clicks/taps on

it.

○ Go to the Right actor’s program.

○ Go to Events.

○ Find Mouse Down event under Entity Mouse/Touch events. Drop it in the

Programming Area. This event will be triggered when you click on this

entity, which is the Right button.

○ Find Increase command under Assignment/Variable category. Drop it

under the event.

○ Find Entity command under Actor/Entity category and put it as the first

parameter of Increase.

○ Go back to the scene, select the CueBall , and in Property Editor find

the Name value

○ Set Entity parameter to the CueBall Name value.

○ Set Increase amount to “2”.

3. Program the Left actor to turn the CueBall counterclockwise when the player

clicks/taps on it. To do so, repeat the same steps as for the Right actor, only this time

for the Left actor. Change the Increasecommand’s first parameter to “Decrease”, so

that the ball turns in the reverse direction.

Run the scene and make sure it’s working as expected.

Step 10 - Create the Pocket Actor and Program Collision

Play the scene. As you can see, the balls do not have any reaction when they hit a pocket. They

have to be removed from the scene when they hit a pocket. In this step, we are going to add this

feature to our game.

1. Adding Pockets : Even though we have the pockets in the pool table image on the

scene, they can not have any reaction with the balls. To be able to define behaviors

for pockets, we have to create a Pocket actor.

○ Go to Actors.

○ Click on Add Actor.

○ Set the Name to “Pocket”.

○ Choose “Pocket” for the Image.

○ Set the Type to “Static”. So it won’t move when the balls hit it.

○ Set the Shape to “Circle”, to make its collision boundary circular.

○ Drop six Pocket entities to their positions on the table. You can use

the CTRL key to copy a Pocket entity.

2. Programming NumBall reaction to colliding with pockets:

○ Go to Actors

○ Go to NumBall’s program.

○ Go to Events.

○ Find the Collision Start event under the Physics events, and drop it

into the Programming Area.

○ Now we need to check if the collided actor is a Pocket , we need to

remove the ball.

○ Drop IF under the event.

○ Under Commands, find the Relational command under the Logic

category and drop it into IF command’s Conditionparameter.

○ Find the Event command under the Event category in Commandstab.

Drop it into the first parameter of Relationalcommand.

○ Leave the Relational command’s operator as “==”.

■ Set the Event command parameter to “Collided Actor”.

■ Find Actor command under the Actor/Entity category.

Drop it as the second parameter of Relational.

■ Set the Actor command parameter to “Pocket”.

■ Find Destroy command under the Actor/Entitycategory.

Drop it inside the IF body.

■ Find This Entity command under the

Actor/Entitycategory. Drop it into the Destroy command’s

first parameter. Change the This Entity command’s

parameter to Name.

■ Run the scene and make sure that the Numballs are

removed as expected.

3. Programming CueBall reaction to colliding with pockets: As you see, we still need to

fix the CueBall so that whenever it hits any pocket it should go back to the start point.

○ Go to Actors.

○ Go to CueBall program.

○ Go to Events.

○ Find the Collision Start event under the Physics events and drop it

into the Programming Area.

○ Now we need to check that if the collided actor is a Pocket , we

have to remove the CueBall .

○ Drop the IF under the event.

○ Under Commands, find the Relational command under the Logic and

drop it into the IFparameter.

○ Find Event command under the Event category in Commands tab. Drop

it into the first parameter of Relational.

○ Leave the Relational command’s operator as “==”.

■ Set the Event command parameter to “Collided Actor”.

■ Find Actor command under the Actor/Entity category.

Drop it into the second parameter of

Relationalcommand.

■ Set the Actor command parameter to “Pocket”.

■ Find Set command under Assignment/Variable category.

Drop it into the IF body.

■ Find Entity command under Actor/Entity category and

put it as the first parameter of Set.

■ Set Entity parameter to “Top”. Set the amount to “336”,

which is the starting top position of the CueBall in

pixels.

■ Do the last 4 steps and set Left to “342”, which is the

starting left position of the CueBall in pixels.

Stop the CueBall after hitting the pocket: Run the scene. As you can see, the CueBall will be

moved to the starting point after the collision. But it still has its linear and angular speed values

that causes the ball to move and rotate even after being moved to its starting position. To fix

this:

● Do the same steps as for the Top and Left of the CueBall to set its Speed to “0”.

● Set the Angular Speed to “0”.

● Set the Rotation to “90”.

Run the scene and make sure everything works as expected.

Step 11 - Create Restart Button

In this step, we add a restart button on the scene that takes the game to its starting point,

whenever it is clicked or tapped by the player.

1. Adding Restart actor:

○ Go to Actors.

○ Click on Add Actor.

○ Set the Name to “Restart”.

○ Choose “Restart” for the Image.

○ Set the Type to “Static”, so it won’t move when the balls hit it. We can

also set its Has Physics to “False” to disable its physics completely.

○ Set the Shape to “Circle”, to match its image.

○ Drop it onto the scene and move it to a good position.

2. Programming the Restart button: it takes us back to the main scene, whenever the

player clicks on it.

○ Go to Actors

○ Go to Restart program.

○ Go to Events.

○ Find Mouse Down event under Entity Mouse/Touch events, and drop it into

the Programming Area.

○ Find Switch Scene command under the Scene category.

○ Drop it into the the ON_MOUSEDOWNevent.

○ Set the Switch Scene parameter to “Main”.

Run the scene and make sure it works as it should.

Step 12 - Add Sound to the Game

In this step, we add some sound to the game. We have 4 preloaded audio files under the Assets

=> Audio:

● Ball & Ball

● Ball & Wall

● NumBall & Pocket

● CueBall & Pocket

In this step we will program the balls to play the sound when they collide.

1. Adding the NumBall hitting pockets Audio:

○ Go to Actors

○ Go to NumBall program. We have already programmed its collision

with the Pocket .

○ Find Play Audio command under the Assets` category, and drop it

before the Destroy command in the ON_STARTCONTACT event.

○ Run the scene and make sure it works as it should.

2. Adding the NumBall hitting the walls Audio:

○ Set the Play Audio parameter to “NumBall-Pocket”.

○ Go to Events.

○ Find the Collision End under the Physics events and drop it into the

Programming Area.

○ Drop an IF command from the Control Flow Toolbar under the event.

○ Go to the Commands.

○ Find Relational command under the Logic and drop it into IFparameter.

○ Find Event command under the Event category in Commands tab. Drop it as

the first parameter of Relational.

○ Set the Event command parameter to “Collided Actor”.

○ Find Actor command under the Actor/Entity category. Drop it as the

second parameter of Relational.

○ Set the Actor command parameter to “VWall”.

○ Drop Play Audio under the IF body.

○ Set the Play Audio parameter to “Ball-Wall”.

○ Do the same for HWall .

○ Do the Same for CueBall , just change the Play Audio parameter to

“Ball-Ball”.

○ Run the scene and make sure it works as it should.

3. Programming CueBall Audio. Similar to previous steps:

○ Under the collision event with pockets, add Play Audio and set its

parameter to “CueBall-Pocket”.

○ Add two IF commands for collision with VWall and HWall .

○ Add Play Audio with “Ball-Wall” under the IF bodies.

○ You do not need to program the Ball-Ball collision sound because you

have already programmed it under the NumBall .

Run the scene and make sure it works as expected.

Step 13 - Publish Your Game

Congratulations on making it this far! This is the last step of this course. We are going to publish

our game on the Web and share it with our friends.

Prepare the project’s Web page

If you have not done so already, now is the time to set up the project’s Web page. The project’s

Web page is located at actimator.com/app/[project-domain] , where project-domain is the unique

domain for your project. The page contains the game’s name, icon, tagline, description,

screenshots, etc. It also contains a play button that allows others to play your game online.

We edit the project’s Web page from its Settings page. To go to the Settings page, click on the

Publish button on the top right side of the Lab. It opens the publish dialog, which contains a link

to the project’s Settings page. Click on the link. From the Settings page, we do the following:

1. Choose a proper Domain. The domain is unique for each project, and it appears on the

game’s link. Make sure you choose a nice and easy domain for your project.

2. Write the Tagline (short description) and Description (long description) for the game.

3. Upload game icon. Create an icon for your game and upload it from here.

4. Upload splash screen. Splash screen is a large image that appears while the game

is loading.

5. Upload Screenshots. Take a few screenshots of the game and upload them.

Screenshots appear on the project’s Web page in a slider.

When you are done, go to the project’s Web page and see if it looks great. Do any adjustments

that you can to make the page look awesome.

Save a version

In order to publish our game, we have to save a version of our project. When we save a version,

Actimator copies the current project and its assets to a separate location so later on when you

change the project, the saved version remains unaffected. This allows us to keep working on

our project while people are playing the saved version of our game. Whenever we have a new

update to the game, we save it as a new version and publish it.

To save a version:

● Click on the arrow icon on the Savebutton. It opens the Save Version dialog.

● Enter a number for this version.

● Enter a description for this version.

● Press the Save a Version button.

Publish the game on the Web

Now that we have saved a version of our game, we are ready to make our game available

online so that others can play it. To publish our game, we go to the publish page using the link

provided in the Publish dialog. On the publish page:

1. Choose the Web tab.

2. Choose the version that you just saved.

3. Press the Publish to Web button.

Voila! Your game is published. You can see a Play button in the project’s Web page, under the

game icon.

Share your game

Anyone who visits your game’s Web page can play it by clicking the Play button. You can share

these links with your social network:

● Game Project Page: https://wwww.actimator.com/app/[your-project-domain]

● Game Play Page: https://wwww.actimator.com/app/play/[your-project-domain]

Congratulations!

Congratulations for creating and sharing your video game with Actimator. By now, you have

gained a solid grasp of how Actimator works. Explore the Actimator Website and make more

games. Happy Game Making!

